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Abstract

Successful military operations are increasingly reliant upon an advanced understand-

ing of relevant networks and their topologies. The methodologies of network science

are uniquely suited to inform senior military commanders; however, there is a lack

of research in the application of these methods in a realistic military scenario. This

study creates a dynamic game on network topology to provide insight into the effec-

tiveness of offensive targeting strategies determined by various centrality measures

given limited states of information and varying network topologies. Improved model-

ing of complex social behaviors is accomplished through incorporation of a distance-

based utility function. Moreover, insights into effective defensive strategies are gained

through incorporation of a hybrid model of network regeneration. Model functions

and parameters are thoroughly presented, followed by a detailed sensitivity analysis

of factors. Two designed experiments fully investigate the significance of factor main

effects and two-factor interactions. Results show select targeting criteria utilizing

uncorrelated network measures are found to outperform others given varying network

topologies and defensive regeneration methods. Furthermore, the attacker state of

information is only significant given certain defending network topologies. The costs

of direct relationships significantly impact optimal methods of regeneration, whereas

restructuring methods are insignificant. Model applications are presented and dis-

cussed.
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A DYNAMIC GAME ON NETWORK TOPOLOGY

FOR COUNTERINSURGENCY APPLICATIONS

I. Introduction

The combinatorial effect of rising populations and rapidly expanding technologies

points to globalization as a significant driving force for continued modernization. De-

spite the fantastic promises of such capabilities, pragmatists point out the obvious

shortfalls. Failed states and non-state actors have exploited these advances through

acts of terror facilitated by relatively small and efficient groups of individuals. These

groups have proven to be both effective and resilient, mostly due to their unique

social structure that enables military actions facilitated by fragmented leadership

and powerful international financing. The United States Army doctrine concerning

counterinsurgency suggests that the same fantastic process bringing the people of the

world closer is also enhancing the operational capabilities of insurgents and terrorists

(U.S. Army Field Manual 3-24 Insurgencies and Countering Insurgencies). Technol-

ogy enables proliferation and unity of disparate radical ideologies, as well as offers

sharing of resources despite distance or political boundaries. The same technology

that promises a utopian future is being exploited to provide insurgent or terrorist

groups greater strategic effects.

President Bush first defined the national strategy for the United States in combat-

ting these forces in response to the attacks of September 2001 (Bush, 2002). President

Obama (2011) affirmed these policies following the death of Usama bin Laden, re-

defining national priorities for future security operations. A key area of focus for the

President is developing counterterrorism tools. These are to be employed in both for-
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eign theaters in support of counterinsurgency operations, as well as locally in defense

of the American homeland. This is echoed throughout the Department of Defense’s

Joint Publication 3-26 Counterterrorism and the U.S. Army Field Manual 3-24 In-

surgencies and Countering Insurgencies. Both levels of military command doctrine

dictate that a cornerstone effort against terrorist organizations is the development of

actionable intelligence. This is especially difficult considering the complexities inherit

in large social networks, as well as the massive amount of data available from the

technologies that now unite them. Understanding and exploiting the social networks

driving these groups enables an attacker to more precisely strike in order to disrupt,

disable, and ultimately dismantle these groups.

The Committee on Network Science for Future Army Applications (2005) defines

network science as “the organized knowledge of networks based on their study using

the scientific method”. Despite being a relatively new discipline, network science is

uniquely positioned to combat both traditional enemies as well as modern evolving

threats. Recent research shows two promising trends for the field; that engineered

networks are effective in modeling organic social and biological networks, and ad-

vances in computing technology now enable researchers to exploit massive amounts

of data with relative ease (Committee on Network Science for Future Army Applica-

tions, 2005). Researchers can now model a terrorist network paradigm under varying

constraints to inform senior military decision makers on the effectiveness of particular

policies and operational strategies.

1.1 Motivation

For an insurgency, a network is not just a description of who is in the
insurgent organization; it is a picture of the population, how it is put
together and how members interact with one another (U.S. Army Field
Manual 3-24 Insurgencies and Countering Insurgencies).
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Insurgent or terrorist organizations are subject to the same social phenomena

common to all other social networks. These universal tenants of human interaction

offer military analysts the chance to observe important insights into how an enemy

network is structured and operates. These groups normally seek to operate covertly

to blend with the local population and confound the effects of counterinsurgency

operations. Military commanders employ their resources through a targeting cycle

to effectively select and prioritize targets and match them to appropriate responses

considering operational requirements and capabilities (Joint Publication 3-0 Joint Op-

erations). A military commander thus relies exclusively on their ability to correctly

identify the members of these covert networks for targeting. Intelligence analysts

provide commanders this insight of available information through collection, process-

ing, integration, evaluation, analysis, and interpretation (Joint Publication 2-0 Joint

Intelligence). A critical task for any intelligence analyst is to define the enemy threat

for their commander, something that proves exceptionally difficult against a cunning

and covert insurgent group.

The Committee on Network Science for Future Army Applications (2005) explains

the incredible potential of network science for U.S. Army and Department of Defense

(DoD) applications. Network-centric Operations (NCO) is now a burgeoning field

within the DoD and is being integrated at almost every level. Studying networks

yields dividends in more reliable communication systems, streamline command and

headquarters processes, and provides valuable insight into enemy operations. Com-

mittee on Network Science for Future Army Applications (2005) states that although

network science is still a discipline within relative infancy, the DoD is uniquely po-

sitioned to develop this field for great effect within defense applications. Developing

network science models to inform military commanders not only aids in defining the

operational environment, but also builds these capabilities into the targeting and
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intelligence processes.

1.2 Focus of Research

Computer simulation already effectively models attack and defense scenarios to

evaluate the effectiveness of competing strategies. This study extends the earlier work

of Nagaraja & Anderson (2008) by restricting the attacker’s state of information, en-

riching the action spaces of both players, and performing a rigorous analysis utilizing

designed experiments. The desired end state is a model that gives insight to effective

tactical targeting strategies given limited states of information and varying network

topology characteristics.

Much of the current literature assumes that the attacker possesses a perfect state

of information concerning the defending network, a fact that would be nearly impos-

sible to replicate in a real-world case study. Furthermore, what studies do account

for limited information states fail to incorporate a dynamic process of expanding in-

formation states as part of the attacker’s targeting process. This study incorporates

a process to expand the attacker state of information, either through consuming re-

sources as part of an attack round or a probabilistic mechanism associated with a

network attack. Accounting for an attacker’s state of information with respect to

the defender’s network will better model real-world scenarios of interest to the DoD.

Consider, for example, the 2003 coalition invasion of Iraq lead by the United States.

The initial state of information was very limited, however, expanded over time due

to passive intelligence gathering or information gained through the kill or capture of

targeted individuals. The purpose of this research is to provide a set of offensive and

defensive strategies that perform best given a current state of information, as well as

identify thresholds at which those strategies should change. For example, an attacker

may employ a simple strategy whereby vertex order attacks are used when its state of
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information is poor and a centrality-based attack when its state of information is of

higher quality. Such a strategy could prove highly economical and effective against a

sophisticated defense network. Moreover, optimized strategies given a force strength

and resourcing is measured by adjusting the economic resources available to each

player.

An almost universal assumption in attack and defense scenarios is the use of de-

fending average path length as the measure of success. This draws heavily upon

computer science applications where average path length dramatically affects net-

work stability, and has been shown to cause system-wide breakdowns if correctly

targeted (Zhao et al., 2004). However, average path length does not adequately de-

scribe attributes of social network interactions. It can be easily assumed a cunning

defensive network could reattach disconnected edges, especially true in the case of

an ideologically motivated defender. A better measure of overall network health and

individual motivation could be achieved by forming the network on a modified version

of a distance-based utility model. This method captures more intricate phenomena

within the network. For example, removing one high-value node may dramatically

decrease the marginal utility versus cost in a localized region and force lower-ranking

nodes to drop out of the network. Applying a limited state of information on the

attacking force against a utility-based defense network would better describe why

certain strategies outperform others. Furthermore, the results would be more valid

by applying a more accurate metric for both targeting and defense.

Montgomery (2008) states that a factorial experiment is the most effective ap-

proach to experimenting with multiple factors. Simpler experimental designs only

vary one factor at a time resulting in a range of results but failing to capture any

effects due to interaction. A factorial design varies the factors together and provides

much greater insight into the underlying forces driving a particular observed result.
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This design structure provides the capability of a fractional factorial design. These

specialized designs allow powerful analysis of experimental factors while only requir-

ing a subset of the originally required experimental runs. This drastically decreases

overall required resources without significant impact to the quality of the results.

These methods are employed in this study to ensure effective experimentation across

the factor spaces given the computationally demanding requirements from such a

complex simulation.

1.3 Summary

This chapter introduced the national strategic priorities for combatting terrorism

and how network science can effectively aid military researchers. The remainder of

this paper is organized as follows. Chapter II presents network science literature to

provide both background context and current works pertaining to dynamic games on

network topology. Studies presenting useful measures for modeling social networks are

also explored. In Chapter III we set forth the process for a hybridized network growth

model that is subsequently partitioned for use within both the offensive and defensive

paradigms. Chapter IV gives the results of this attack and defense evolutionary game

in regard to differing levels of the attacker’s knowledge of the defending network.

Chapter V presents conclusions as well as focus points for future studies.
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II. Literature Review

This chapter examines current literature concerning the fundamentals of network

science, simulations of dynamic network games, and important explanations of mea-

sures and phenomena. The intent is to provide a justification to the reader of the

efficacy of these studies as well as the chosen factors described in Chapter III. The

first section provides a brief overview of the varied history of network science. Sec-

tion 2 introduces the static network, a classic concept in network science that will be

later enriched. Section 3 presents some related studies that demonstrate some similar

application of network science, as well as justify certain measures later used in the

course of the simulation. A series of dynamic network topology games is given in Sec-

tion 4, giving insight into related works. Section 5 presents several studies providing

technical bases for later work.

2.1 Background

Network science spans several academic disciplines. Researchers in the social,

information, and natural sciences apply network scientific methods within their re-

spective fields, creating several unique sub-disciplines adhering to the same basic

concepts. Jackson (2010) and Lewis (2011) provide exhaustive histories of network

science, both of which are reviewed here to provide background and context.

Social Networks.

The application of network science to the study of social interactions is the old-

est application with original applications in sociology and social psychology. Early

researchers such as Davis et al. (1969), who mapped the social circles of women in

the 1930’s American South, sought to describe the relationships and group dynam-
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ics of their target populations. Early economic and marketing researchers focused

upon the diffusion of thoughts and innovations throughout complex social networks.

Coleman et al. (1966) and Ryan & Gross (1950) investigated the diffusion of medi-

cal innovation and hybrid corn technologies, respectively. Milgram (1967) famously

measured and defined the small world problem during this period. Researchers dis-

tributed packages throughout the American Midwest containing a chain of custody

roster and instructions to return the packets to researchers in Massachusetts. The

results showed a median value of five intermediaries for each package, however only

25% were successfully returned (Milgram, 1967) (Travers & Milgram, 1969). Guare

(1990) would later famously coin the phrase “6 degrees of separation”, a reference to

Milgram’s discovery of the surprisingly short diameters of complex social networks.

Contemporary researchers still apply these concepts, however technology facilitates

application at a much grander scale. Backstrom et al. (2012) sampled 721.1 million

Facebook accounts and found the average path length between users to be only 4.74

links.

Labor markets have long been known to exhibit networked characteristics, even so

far as to spawn the adage to “network” for a job. Early studies confirm the importance

of informal channels and networks in attaining a job. Rees (1966) distinguishes the

importance of informal networks, such as direct and indirect referrals, while searching

for employment. The more contemporary work by Ioannides & Loury (2004) models

this behavior and found considerable evidence to support claims of heterogeneity

within the labor market. Research is not limited to legitimate labor markets; there

is considerable analysis of criminal networks. Reiss Jr (1988) finds that two-thirds of

criminals do not act alone, and Glaeser et al. (1995) find significant evidence for a

wide range in the degree of social interactions in crimes.

Based upon earlier diffusion studies, analysis of information networks demon-
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strates how ideas and information spreads. One example is through the study of

academic citation networks. Citations represent a directional relationship; one au-

thor cites another’s to build a case for their own original idea. De Solla Price (1965)

is one of the first to study scientific citations using a relatively simple matrix analysis.

Newman (2001) reexamines these networks from the perspective of scientific collabo-

ration in the 1990’s, finding that they displayed various small-world phenomena such

as small diameter and high clustering. Clustering is the formation of relationships

based upon current relationships; scientists are more likely to collaborate together if

they are tied through a mutual friend or colleague. Goyal et al. (2006) provide an

exhaustive analysis of coauthorship within the economics community from the 1970’s

through 2000. Their analysis shows that the professional network expanded signifi-

cantly over this period, with significant drops in both the average path length and

an increase in average degree of all researchers. Such a result provides one of the

most unique and intriguing cases for the effects of modern telecommunications and

globalization upon network formation.

Information networks are also defined by the spread of ideas through developing

technologies such as the world-wide web. Albert et al. (1999) provides one of the

first studies into the small-world phenomena as the technology first emerged. The

study employs a web crawler to sample a significant portion of the world-wide web

and cataloged documents and links (URLs) that pointed from one website to another.

They find a complex topology displaying a small diameter. This result suggests that

an intelligent agent could effectively navigate significant portions of the web with

only a few link selections. Further research demonstrates the clustered nature of the

web with few unusually long paths between nodes (Barabási et al., 2000) (Adamic,

1999). Jackson (2010) shows that these networks, although previously thought to be

uniquely random or scale-free, are in fact hybrid combinations drawing upon both
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methodologies of formation.

2.2 Military Applications

Network science offers many potential applications within military operations.

Miller (2013) presents a novel application of network analysis in the Islamic Maghreb,

Mali. Using the concept of social balance, Miller (2013) examines the interrationships

of subgroups during the 2012-2013 conflict. The results indicate possible tensions

between two specific groups, despite no overt indication of such conflict. In the

course of completing the study, current events validate these results as one of the

groups unexpectedly alters allegiances as the network model predicted.

Network science is a highly technical and specialized skillset, and thus is chal-

lenging to integrate into military operations. Geffre et al. (2009) bridge this gap by

establishing a process to target a terrorist organization based upon network topology.

The study presents a quantitative method using three measures for individuals in

a terrorist organization; social connectedness, operational involvement, and known

attendance to operationally significant events or locations. The measures can be

weighted to then establish critical individuals for military targeting in order to most

efficiently disrupt the network.

Carley et al. (2003) identify a critical shortfall in the application of network anal-

ysis in counterterrorism. Classic network analysis fails to account for the dynamic

nature of covert networks and tends to only examine trivial-sized networks. Carley

et al. (2003) state is more important to understand how a network evolves versus a

detailed analysis of its structure. Moreover, military commanders and intelligence

analysts conduct biased analysis of terrorist network structures. Terrorist networks

have a structure far different than the hierarchical military networks these individuals

may understand more intuitively.
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Carley et al. (2003) present a dynamic network analysis process that incorporates

multiple measures within a single network. The toolset then examines the effec-

tiveness of the network over time given the removal of a specified key node. The

process captures the destabilizing effects over time as the network adapts to its now

constrained topology. Carley (2004) extends this process to estimate vulnerabilities

of covert networks. The study examines network topologies for both al-Qa’ida and

Hamas using dynamic network topology. Both organizations are comprised of intri-

cate and unique topologies, but differ significantly from standard military hierarchical

structures. The results from analysis show the destabilization and effects caused by

the removal of certain key individuals.

2.3 The Static Network

The seminal work of Erdös & Rényi (1959) define the parameters for a set of ran-

domly formed graphs. Erdös-Rényi graphs establish a set of nodes with a designated

probability of forming links with neighboring nodes. Although these prove immensely

helpful to generate measures and study baseline cases, they fail to adequately capture

the complex nature of real-world networks. Albert et al. (1999) best encapsulate this

while studying the complexity of the world-wide web. By mapping the URL links

from the Notre Dame website, they show the observed network displayed far more

higher-order vertex nodes then expected by pure random formation. They effectively

model the observed set using a scale-free model based upon preferential attachment.

In such models newer nodes are more likely to form links with older and better con-

nected nodes (Jackson, 2010). Their resulting scale-free model produce networks with

small average path lengths and a high degree of clustering, providing a far better fit

to the observed data.
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Barabási & Albert (1999) produce one of the innovative cases demonstrating the

attributes of a static network. Erdös-Rényi graphs fail to capture much of the com-

plexity due to clustering seen throughout the natural world. This study builds scale-

free networks that more closely resemble those found throughout the real world using

the concept of preferential attachment. The distribution of the scale-free networks

allows for new vertices to constantly be formed and in a non-random fashion. Fur-

thermore, the formation of vertices is preferential towards attaching to nodes that are

already well-connected. Therefore as certain nodes fail or are destroyed, the network

shows preferential edge formation with highly connected nodes. This closely mim-

ics the authors’ observations of naturally occurring scale-free networks such as the

world-wide web or the structure of popular culture networks. As certain key nodes are

removed, edge reconnection is deliberate and directed primarily towards the largest

and most well-connected ones. Perhaps most interestingly, these ideas would later

help form the basis for dynamic network topology.

2.4 Parallel Research

Cohen et al. (2000) continue the application of modeling the world-wide web

using a scale-free design, this time to analyze the network’s robust nature against

random breakdown. Their results show that this particular network structure proves

highly resilient towards simple error and mechanical breakdown. The dense nature

and high clustering results in data traffic simply being routed around the affected

node. The overall effect of the network slows, but almost 99% of all nodes could be

destroyed while still maintaining connectivity. Their results show that large scale-

free networks can dilute to amazingly low levels, but will rarely disintegrate due to

random breakdowns.

The vulnerability of scale-free networks to attacks is further explored by Zhao
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et al. (2004). They study the effects of pointed attacks against a scale-free network,

concentrating upon the vulnerability of these networks toward a cascading failure in

these instances. Networks such as the world-wide web function with separate nodes

operating at a certain capacity with a load somewhere below the maximum capac-

ity. Random failures or errors would be distributed throughout the large network

as surrounding nodes bore the brunt of the extra load, however would still not fail

as the overall capacity would not be disrupted. A series of pointed attacks against

key nodes could effectively disrupt the load and capacity of the network in order to

cause a cascading series of failures throughout the network. The higher load would

systematically move throughout the nodes and quickly overpower their capacities.

Zhao et al. (2004) model a scale-free network under a specified load and then conduct

a series of attacks to try and instigate a cascading failure by surpassing a critical

value of load. The results show that removing very well connected nodes within a

network indeed force a cascading failure, especially under networks of lower tolerance.

Less-connected, periphery nodes cause little impact on the overall system, even when

tolerance is exceedingly high. The networks studied showed a phased phenomenon,

where depending upon the network tolerance it either remains integrated or com-

pletely disintegrates due to the attacking force.

Holme et al. (2002) study the resiliency of various complex networks, both real-

world and simulated, to attacks directed upon edges. This study attempted to test

not only the effectiveness of certain types of attacks and defense, but also measured

the validity of certain models against real-world network data. The real-world net-

works include one formed of authors in an e-print archive and resulting works cited.

The other real-world network included one formed by 24-hours of traffic on a large

computer network server. Theoretical networks include a model of random networks,

a scale-free network, and a clustered scale-free network. The clustered scale-free net-
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work included an additional formation step that included the probability of a triad

formation following a preferential edge formation. The result is a scale-free network

with small cliques tied to each high-vertex order node, resulting in a theoretically

more resilient network. The study incorporated numerous attack strategies to in-

clude removals by descending order of the degree and betweeness centrality based

upon earlier work by Freeman (1977). Both strategies are either based on the initial

network conditions, or updated dynamically at the end of each iteration. They found

that none of the modeled networks behaved in a fashion similar to the real-world

examples. Furthermore, the attack strategies that updated targeting information dy-

namically at every iteration performed far better then those conditioned simply on

initial network conditions. This is unsurprising as edge formation following repeated

iterations of attack would drastically alter the shape and resiliency of any network.

The randomly generated networks fared far better against an attack compared against

the scale-free networks in both the modeled and real-world examples. This demon-

strates that although scale-free networks are very resilient against random failures,

their unique structure leaves them extremely vulnerable to an aggressive attacker.

Lin et al. (2012a) present a network survivability study incorporating non-deterministic

properties to model limited network information for both sides. This is the first study

to incorporate real-world constraints and considerations into the study of network

topology. They incorporate the probabilistic nature of network information for both

sides, as well as develop a more realistic method to game the results of network con-

tests. Previous research assumed the side that expended the most resources would

control a node. This is not entirely applicable to the real-world where a cunning

adversary can easily overcome a highly resourced one through a higher degree of

intensity in conflict. Their measures of network effectiveness focused on quality of

service measures, allowing analysis from both a system and service perspective. This
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enables a more detailed analysis of the effects of attacks on a defending network’s

overall capabilities and not just the network’s ability to maintain basic connectivity.

The approach employed by Lin et al. (2012a) model real-world scenarios, as the

defending network would be primarily reactive in nature and is constrained in main-

taining a specified quality of service to all its nodes. However, defenders can adopt

several effective strategies to include defense in depth and resource concentration.

Their approach captures these nuances in a balanced objective function for the de-

fender: maintaining network quality of service while shifting defense resources in

response to on-going attacks. The overarching defense constraint concerns budgetary

restrictions. The attacker carries a limited budget as well, but can balance capability

and aggressiveness in an attempt to overcome the dynamic defender. The simula-

tion is then conducted while adjusting several parameters for sensitivity. The results

include verification of the logical assumption that a conflict with a higher intensity

prefers the attacker. More interesting results are seen when the aggressiveness of the

attacker is jointly considered with the intensity of the conflict. Lower intensity con-

flicts force more aggressive attackers to expend additional resources to compromise a

node. Likewise, a higher intensity conflict requires a more passive attacker to expend

greater amounts of resources. The results show an aggressive attacker will prefer to

develop high-intensity conflicts to reduce overall expended resources. Moreover, a

high-intensity conflict results in a highly aggressive adversary compromising the net-

work within an affordable range of resources. The results further show that defense

in depth is more effective against a less aggressive attacker. This is because the less

aggressive attackers are less likely to expend large amounts of resources. Likewise, a

defense in depth strategy is relatively weak against a highly aggressive foe expending

large amounts of resources. In agreement with these findings is that a resource con-

centration strategy for defense is best against a more aggressive attacker expending
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large amounts of resources. This result is shown in a later study where the authors

operationalize the concepts in an analysis of specific threats against a local computer

network (Lin et al., 2012b). The concepts again show a defense in depth is best

against a less aggressive attacker, while a strategy of maximizing defense resources is

best against extremely aggressive attackers.

2.5 Dynamic Network Paradigms

Albert et al. (2000) show that the unique structures of scale-free networks make

them extremely resilient against errors but very vulnerable to attack. Most interest-

ingly, a determined attacker can remove well-connected nodes to a certain threshold

after which the communication of the network is reduced exponentially. Communi-

cations networks such as the internet are extremely stable, despite frequent hard-

ware failures and network outages. This is because of the robust formation of nodes

throughout the network, most especially the likelihood of large nodes becoming hubs

with many nodes. Biological networks such as bacteria growth are also extremely

resilient to random error, however modern medicine has proven their structure very

easy to exploit. The same tendency of a network to naturally build clusters for

resiliency makes them especially susceptible to hostile attack. They found that a

scale-free network expands quickly in response to targeted attacks on the most well-

connected nodes. The result of this growth is a decreased ability for the nodes to

maintain communication throughout the network. They show that the world-wide

web is especially susceptible to attack as even moderate attacker scenarios are able to

fully disrupt communications. The same structure that made the network so resilient

to error makes it completely defenseless to an attack concentrating upon the most

well-connected nodes.

Nagaraja & Anderson (2008) model an iterative dynamic game to capture the
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interactions between attack and defense strategies of scale-free networks. They try

to identify how these network attributes may contribute towards the structure of

modern terrorist organizations, most especially towards their unique defensive struc-

tures. They start with an analysis of the effectiveness of naive defenses, specifically

how they are ineffective against a decapitation attack. As shown through earlier

works, an attack focused upon well-connected nodes in a scale-free network holds

a high probability of causing a cascading network failure. Edge replenishment can

take place after an attack, but the overall effect towards reestablishing the network

is minimal. The aggressive attack will always defeat the naive defense. Nagaraja &

Anderson (2008) utilize game theory to model a multiple-round attack and defense

game to develop more robust defense strategies. Their model consists of three phases

for every round: attack, replenishment and adaptation. This allows a more robust

and adaptive defense, as seen in the three overall defense strategies used. First is

the naive defense of random replacement. New nodes form random edges and the

defender does not use the adaptive phase. The second defense is based off the dining

stenographers problem developed by Chaum (1988); high-vertex order nodes split into

subsections in an attempt to thwart vertex-order attacks. The splitting of key nodes

to form rings not only provides additional network resiliency, but also aids in further

concealing the network’s communications to outside entities. In effect, this structure

hides high-vertex order nodes from any attacking force. The third and final defense

strategy again splits high-vertex order nodes into smaller subsections, however now

forms these sub-nodes into an organization of cliques. The edges of the previously

high-vertex order nodes are then distributed evenly throughout the cliques.

Nagaraja & Anderson (2008) conduct a simulation of these three defense strategies

against a vertex-order attack strategy. Unsurprisingly, the naive defense performed

poorly against the attack. The ring-based defense fared somewhat better but still
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failed to adequately protect the network for a significant time. Only the clique de-

fense protects the network for a significant period, but in the end still fails to provide

adequate defense. Each of the unique defensive structures is compared against sev-

eral unique attack strategies; both centrality and vertex-order attacks outperform

the others. They found that the centrality algorithm developed by Brandes (2001)

was superior to other attack strategies against cliques, however required an extensive

knowledge of the defending network’s structure. With the understanding that cen-

trality attacks worked best against clique defenses, the researchers then developed a

hybrid clique defense designed to protect against centrality attacks. Using a variation

of Chaum’s ring-based defense (Chaum, 1988) coupled with clique formation, they

found significant protection against a focused centrality attack.

Domingo-Ferrer & González-Nicolás (2011) enrich the model from Nagaraja &

Anderson (2008) to further consider weighted and directed networks, economic limi-

tations on the attack and defense strategies, as well as limiting the information state

of the attacking force. One of their most significant contributions is the requirement of

the defender to obfuscate their topology from an attacking force. They perform sim-

ulations to evaluate the robustness of both weighted and directed scale-free networks

to attack. The simulations failed to show a significant difference between weighted

and unweighted networks. Directed networks did show significant resilience compared

to undirected networks, a fact attributed to the robust nature of bilateral communi-

cations between most nodes. Domingo-Ferrer & González-Nicolás (2011) also limit

the state of information of the attacking force by creating a sub-network of limited

size and restricting all attacks to this reduced space. The most ill-informed attackers

fared far more poorly compared to those with greater or even perfect knowledge of

the defending network structure. While this made a very compelling point, it failed

to account for the dynamics of information states as would be found in real-world
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attack and defense scenarios.

Kim & Anderson (2013) further expand the influential work of Nagaraja & An-

derson (2008) by incorporating a sophisticated economic system to limit the action

rounds of both the defender and the attacker. They report a set of maximized strate-

gies for given scenarios primarily using network models based upon computer and

peer-to-peer networks. The study provides valuable insights into the performance of

certain targeting and defense resilience measures.

2.6 Quantifying a Network

Several works develop a comprehensive evaluation of network measurements and

attributes (Newman, 2001) (Albert & Barabási, 2002). The complexity inherit in sta-

tistical models used to describe social networks is well captured by Albert & Barabási

(2002) in an overall summary of commonly used processes. Their seminal work evalu-

ates the topology of both real world and modeled networks; they consider traditional

random graph networks, small-world networks, and scale-free networks. Their work

serves to show the complexity inherit in each real-world network, and the adequacy

of various models to correctly capture those nuances. The study summarizes statistic

mechanics available to analyze these complex networks.

Guzman et al. (2014) build upon earlier studies by conducting an analysis into

the relationships of the various measures used to examine networks. Twenty-four

network measures are analyzed for overall success and ease of implementation with

interesting results. Their results indicate significant correlation between 14 of 24

considered network measures, with several measures being highly correlated. Four

distinct groups of correlated measures are identified, but several measures remained

separate from these groups. The implication is that these individual measures effec-

tively capture specific and unique network phenomena. The computational difficulty
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of each process is also considered, giving an overall view of some of the trade-offs

for each strategy. The results prove highly useful to researchers seeking to apply a

network measure when computation time is an important consideration. A compu-

tationally demanding measure may have a highly correlated partner with far fewer

computational requirements. Guzman et al. (2014) conduct their analysis using a

random graph generation algorithm created by Morris et al. (2013). (Morris et al.,

2013) introduce a model for random network generation enabling the construction

of networks exhibiting desirable qualities. The Prescribed Node Degree, Connected

Graph (PNDCG) algorithm builds networks effective for testing measures in network

analysis.

20



III. Methodology

This chapter presents the simulation of the dynamic game on network topology.

Experimental factors, player action spaces, and state of information functions are

introduced and defined. A discussion of the simulation provides an overview to the

processes being implemented in Chapter IV.

3.1 Defining the Network

This study represents networks using a network science approach to classical graph

theory and adopts the notation found in Jackson (2010). The set N = {1, . . . , n}

represents the set of nodes in a network of relationships. In a social network, each

node corresponds to an individual person. A graph (N, g) consists the node set N and

a n×n matrix g, where gij represents the relation between nodes i and j. A graph can

consist of directed relationships if it is possible that gij 6= gji, or strictly undirected

relationships if gij = gji for all nodes i and j. This study only considers undirected

graphs as they better model social and economic relationships (Jackson, 2010). The

relationships in g can also be weighted to provide greater context and meaning to a

relationship, however this study only utilizes unweighted graphs, where gij can equal

either 0 or 1, as Domingo-Ferrer & González-Nicolás (2011) show weighting effects

to be insignificant within the framework of this manner of dynamic game. Nodal

self-relations are not considered.

Attributes of a network g can be defined to describe social characteristics. A

network g is connected if any node i can reach any other node j. Many networks

are not connected, however, analysis can be conducted on the components of the

overall network. A network component is a connected subset of the overall network.

A geodesic, P (ij), is the shortest path between nodes i and j. This notation can be
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refined to Pk(ij) to designate all geodesics between nodes i and j upon which node k

resides. The number of links in a geodesic is designated as `(ij). A node’s localized

position within a network is defined as its neighborhood. The direct neighbors of

a node i in network g can then be defined as Ni(g) = {j : gij = 1}. An extended

network represents all nodes within k steps of node i, or the “friends of friends” for

a particular node, and can be thought of all the union of all local neighborhoods. It

is designated as Nk
i (g) = Ni(g) ∪

(⋃
j∈Ni(g)

Nk−1
j (g)

)
. Table 1 provides an overview

of all pertinent graph notation.

Table 1. Table of Graph Notation

Parameter Description

N Set of all nodes in g, N = {1, . . . , n}
g n× n network matrix where gij represents a relationship

(N, g) Graph of network g with node set N
gij Edge between nodes i and j
di(g) Degree of node i in g, or |Ni(g)|
Ni(g) Direct neighborhood of node i in g, or the set {j : gij = 1}
Nk
i (g) k-step neighborhood of node i, or Ni(g) ∪

(⋃
j∈Ni(g)

Nk−1
j (g)

)
P (ij) Geodesic connecting i and j
Pk(ij) Geodesic connecting i and j, but also including node k
`(ij) Number of links in geodesic P (ij)

Building the Game.

It is self-evident that human social interaction is a dynamic process. Nagaraja

& Anderson (2008) effectively captured this artifact of social dynamics through a

simulated dynamic game and this study seeks to expand upon that work. Traditional

game theory does not adequately capture evolving factors found in social networks

such as dynamic covert networks. Player actions update and define the parameters

of the game over time, resulting in a constant adaptation of costs and payouts. A

dynamic game captures this co-evolution of players’ behavior through time phases
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and models the characteristics of a dynamic covert network, or one that is constantly

evolving to respond to external social influences (Carley et al., 2003). The dynamic

games of earlier works are enriched by expanding the two players’ state of information

and action space. This is done to more effectively model the interactions between an

attacking counterinsurgency force and a defending terrorist or insurgent force.

The defending player’s objective is to maintain network cohesion while maximiz-

ing nodal utility values. This is accomplished by effectively recruiting new nodes

with strategic placement within the network as well as restructuring as required to

minimize individual costs to maximize benefit. The attacking player’s objective is

to effect the formation of a network topology such that the defender’s total utility is

minimized. This is accomplished through removing defending nodes based on certain

targeting criteria. An important issue is determining the effectiveness of the different

targeting criteria. A significant challenge for the attacking player is building on a

restricted state of information through investment in intelligence collection. An ef-

fective attack strategy will incorporate precise targeting, fueled by expenditures into

intelligence, to expand the state of information.

Figure 1 shows the overall structure of the simulation. The simulation is comprised

of three primary phases: initialization, attack, and defense. The initialization phase

consists of building the initial defending network and establishing the attacker’s state

of information. The attack phase consists of an evaluation of the current information

state and then determining an action, either attack or intelligence collection. The de-

fense phase consists of an evaluation of utility scores and then determining an action,

either restructure or recruit additional members. A termination phase determines if

any simulation stopping criteria have been met, otherwise the simulation continues

back to the attack phase.
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Figure 1. Structure of the Simulation
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3.2 Initialization Phase

Initial starting conditions are set by forming the defending network and the at-

tacker’s state of information. The initial node set N remains fixed throughout the en-

tire simulation. The PNDCG algorithm is utilitzed to generate an individual network

g that best mimics a specific covert network. Graph (N, g) represents the defending

player for the game.

The initial starting topology for the defending network is designed to closely rep-

resent known covert networks. The PNDCG algorithm offers flexibility in creating

engineered networks with desired characteristics (Morris et al., 2013). This flexi-

bility allows modeling of highly cellular networks such as al-Qa’eda, more stratified

networks such as Hamas, or highly hierarchical networks such as the early Iraqi insur-

gency. Each topology drives a unique strategy for both the attacking and defending

players.

The attacker’s state of information is captured by the set N̄ ⊆ N , where inclusion

of nodes in N̄ indicates information known to the attacker. The attacker is also aware

of any edges between known nodes. As such, the attacker’s state of information can

then be represented by the sub-matrix ḡ, a |N̄ | × |N̄ | matrix.

The attacker’s initial state of information is determined by stipulating the size

of N̄ . A random permutation of nodes in N is used to initially populate N̄ , where

|N̄ | = bφnc and where φ is the proportion of the defending network initially known

to the attacker.

The defender’s state of information is established by use of a distance-based util-

ity function using the connections model of distance-based utility, discussed in the

following sub-section. This function returns a vector of node utilities incorporating

both the value of network inclusion and the costs of maintaining direct relationships.
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Connections Model of Distance-Based Utility.

Jackson & Wolinsky (1996) present a connections model on network topology that

produces a utility measure for both individual nodes as well as the overall network.

Individuals derive benefits, or utility, from those with whom they directly communi-

cate. They also gain benefit from indirect relationships, or having “friends of friends”

within their social network. The value of an indirect relationship is proportional to

the distance between nodes. Finally, maintaining a direct relationship between nodes

is costly, so that individuals are required to weigh the benefit against the cost of a

direct relationship.

Jackson & Wolinsky (1996) define the model as follows. Let

κij ≥ 0, ∀(i, j) ∈ g (1)

denote the cost of a direct relationship between nodes i and j. The costs, κij, represent

the time and economic costs associated with maintaining a direct relationship.

Let `(i, j) denote the number of links in the shortest path between nodes i and j

where `(i, j) =∞ if there is no geodesic connecting nodes i and j. Let δ ∈ [0, 1] denote

the decay parameter which modifies the benefit node i derives from its relationship

with any other node. The benefits of “friends of friends” provides diminishing returns

as `(i, j) increases. The utility of node i in network g is

ui(g) =
∑
i 6=j

δ`(i,j) −
∑
i 6=j

κij. (2)

This model includes the decay parameter δ as a measure of the overall benefit of

inclusion in the network. The value of δ impacts the observed utility for individual

nodes and the overall network, and indirectly represents the organizational social tra-

jectory of the defending network. For example, if a covert network exhibits regional
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dominance and possesses tactical momentum, defined as a series of small-scale suc-

cesses enabling a perception of imminent strategic victory, the δ parameter would be

relatively higher as membership increases perceived individual payouts. Likewise, if

a covert network sustained considerable damage due to actions taken by counterin-

surgent forces, the δ parameter would be relatively lower as the perceived benefit

of group membership decreases due to increased risk and possibly decreased social

benefit.

The summation of all node utilities is used to represent the overall utility of the

network ν(g), where

ν(g) =

∑
i∈N

ui(g)

|N |
. (3)

Figure 2 shows the utility curve given varying values for the decay parameter

(δ) and cost (κ). The δ parameter affects the vertical offset of the curve, while κ

determines the slope. Cost (κ) shows a more significant impact on higher degree

nodes as utility decreases more dramatically as κ increases. Moreover, κ greatly

impacts the marginal utility of adding another direct relationship. This is due to the

costs associated with maintaining a direct relationship. The two parameters can be

used in conjunction to define payouts for insurgency members, given dynamic values

of both the benefit and cost of membership.

3.3 Attack Phase

The attacking player begins by measuring the size of x̄, the largest component

within the limited state of information sub-matrix ḡ. The measure x̄ is used to

model a commander’s state of information and determine the player’s logical course

of action. The attacking player can choose to proactively attack or passively collect

intelligence. If the size of the largest component exceeds a predetermined proportion
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Figure 2. Utility vs Node Degree: Cost(κij = 0, 1, 2, 3), Decay(δ = 0.25, 0.50, 0.75)

of the network, x̄ ≥ nτ where τ ∈ [0, 1], then the attacker is satisfied with the

current state of information and attacks. The parameter τ is fixed throughout the

game and represents the level of tactical patience demonstrated by the attacker, or

the amount of time an attacking commander allows to pass prior to committing

forces to action. The attacker may begin a campaign with intelligence collection,

however once a commitment to action is made the player is not limited to a strictly

offensive strategy. The attacker’s state of information may allow an attack in one

turn; effective targeting may split a component and force the attacker back into an

intelligence collection cycle.

Node Removal.

To initiate an attack, the player selects, or targets, a single node within N̄ and

removes it. The attacker targets nodes based on certain network centrality measures.
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Measures of centrality attempt to capture the position of a node, and perhaps its

relative importance within the overall graph (Jackson, 2010). The selected centrality

measure remains fixed throughout the game.

As introduced in Chapter II, Guzman et al. (2014) identify four distinct groups of

highly correlated network centrality measures. Uncorrelated measures are categorized

into a fifth group. Groups of network measures are found to capture the same network

phenomena while requiring vastly differing computational times. This study utilizes

the least computationally difficult centrality measure from each of the four groups:

clustering coefficient, betweenness centrality, proximal target betweenness, and degree

centrality. These selections facilitate evaluation of fourteen network measures in a

highly efficient design. Two additional network measures, eigenvector centrality and

closeness centrality, are included from the fifth group due to common use in literature

(Jackson, 2010).

Clustering Coefficient.

Let CL(i) denote the cluster coefficient of node i, as first defined by Watts &

Strogatz (1998). The clustering coefficient represents the amount of clustering, or

triangular relationships, found within a network. Consider node i and two immediate

neighbors, Ni(g) = {j, k}. Given gij and gik, the clustering coefficient represents, on

average, how often the edge gjk exists. Jackson (2010) defines the clustering coefficient

for node i as

CL
i (g) =

∑
j 6=i;k 6=j;k 6=i

gijgikgjk∑
j 6=i;k 6=j;k 6=i

gijgik
. (4)

The measure is thus the quotient of the number of triangles and the total number

of paired edges.
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Betweenness Centrality.

Let CB
i (g) denote the betweenness centrality of node i. Betweenness centrality

is a centrality measure for a node in terms of “the degree to which a point falls

on the shortest path between others and therefore has a potential for control of

communication” (Freeman, 1979). This measure captures the relative importance of

a node given a particular network. Consider a network with three nodes: i, j, and

k. If the ratio Pk(ij)
P (ij)

approaches 1, then k lies on all or nearly all geodesics between i

and j. Node k is less critical to i and j if the ratio approaches 0. This ratio describes

the overall importance of k within the context of the relationship between i and j.

Averaging this ratio across all pairs of nodes gives the betweenness centrality, defined

by Jackson (2010), as

CB
i (g) =

2

(n− 1)(n− 2)

∑
k 6=j:i 6∈{k,j}

Pk(ij)

P (ij)
(5)

Proximal Target Betweenness.

Let CP
i (g) denote the proximal target betweenness of node i as first proposed

by Brandes (2008). This measure is an extension of betweenness centrality by using

proxies that gives weights to the nodes one step away from the source node s to target

node t. This proxy node is highly influential on the geodesic P (ij).

CP
i (g) =

∑
s∈Ni(g),t:(i,t)=1∈g

Pi(jk)

P (jk)
(6)

Degree Centrality.

Let CD
i (g) denote the degree centrality of node i. Degree centrality indicates how

well a node is connected in terms of direct connections (Freeman, 1977). This is

simply represented as di(g) proportional to the number of remaining nodes within
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the network (n− 1). This measure requires little computational rigor.

CD
i (g) =

di(g)

n− 1
(7)

Eigenvector Centrality.

Let CE
i (g) denote the eigenvector centrality of node i, first proposed by Bonacich

(1972). This measure is an extension of degree centrality, defining the centrality of

a node as being proportional to the sum of the centrality of all its direct neighbors’

neighbors, N2
i (g). CE

j (g) represents the centrality of each node j ∈ g. The value

gij identifies all direct neighbors of node i. The structure of this problem facilitates

computation through solving an eigenvector formulation. The measure in matrix

notation

CE(g) =
1

λ

n∑
j=1

gCE(aj), (8)

where λ is the eigenvalue corresponding to CE
i (g).

Closeness Centrality.

Let CC
i (g) denote the closeness centrality of node i as defined by Freeman (1979)

and Beauchamp (1965). This measure captures centrality through the inverse of the

average distance between i and any other node j (Jackson, 2010). The closeness

centrality is thus

CC
i (g) =

n− 1∑
i 6=j `(i, j)

. (9)
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Sensitive Site Exploitation.

An attacker’s ability to effectively conduct intelligence operations is critical to

effectively target key nodes within an insurgent network (U.S. Army, 2014). Intelli-

gence production takes many forms, however it is restricted to two activities for the

purposes of simplicity in simulation. The attacker can obtain intelligence on the de-

fending network immediately following the removal of a node, thereby incentivizing

node removal and mimicking real-world operations. Military operations conducted

to kill or capture an individual include processes that exploit available resources for

possible intelligence. In the simulation, intelligence collection is tied to the degree

of the removed node. The amount of intelligence gathered is dictated by a proba-

bility, β ∈ [0, 1], evaluated against a uniform random number r ∈ [0, 1]. The direct

neighbors, Ni(g) of removed node i∗ are evaluated individually with a new random

number draw r for each node j ∈ Ni∗(g). If j ∈ Ni(g)) and β < r, j is added to N̄ .

The submatrix ḡ is updated to include node j, and the attacker expands its current

state of information on the defending network. This process models sensitive site ex-

ploitation (SSE), a procedure by which a military unit gathers intelligence following

a detention mission.

Intelligence Gathering.

If the size of the largest component x̄ is less than the threshold nτ , the attacker

conducts intelligence gathering to enhance its state of information. The intelligence

gathering mission is a stochastic process similar to that in the SSE cycle following

node removal. The attacking player first generates the set of highest priority targets,

T = {Cθ
(1)(g), . . . , Cθ

(10)(g)} where |T | = 10, based upon the sorted targeting scores of

centrality measures θ. The arbitrary selection of 10 nodes in the target set models a

common practice by military commanders in maintaining a “top ten” list of highest
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priority targets. A random permutation of this set, T̄ , is used to generate the final

targeting list. This permutation restricts the attacking player’s ability to simply

target the top nodes for collection. This models real-world intelligence collection

which is highly dependent upon target accessibility and detectability.

The attacking player selects the first ζ nodes from the set T̄ for intelligence gath-

ering. Each node is evaluated individually, as in the SSE process. The probability

of a successful intelligence mission is controlled by the parameter γ ∈ [0, 1], which

remains fixed throughout the game. The parameter γ is evaluated against a uniform

random number r ∈ [0, 1]. The set of direct neighbors of a target node i∗, Ni∗(g), are

evaluated individually with a new random number draw r for each node j ∈ Ni∗(g).

If j ∈ Ni∗(g) and γ < r, j is added to N̄ . The process continues until the first ζ

nodes in T̄ are completely evaluated.

3.4 Defense Phase

The defending player begins by recalculating the network utility following the

attack phase. The defender decides to recruit new nodes or restructure based upon

the current set of utility scores ui(g), i ∈ N . A predetermined threshold for minimum

utility score, ρ, determines the defender’s actions.

Network Restructure.

If mini∈N ui(g) < ρ, the defending player will choose to restructure the network

topology in the vicinity of the node with the lowest utility, i∗ = arg mini∈N ui(g). If

more than one node shares the lowest utility value, the node with the lowest index

will be selected. Low utility results from a node being over connected, meaning

there are too many costly direct connections that outweigh the benefits of network

participation. This models a situation in which an individual becomes overburdened
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Figure 3. Terrorist Network Responsible for the 1998 U.S. Embassy bombings in Kenya
and Tanzania (Geffre, 2007)

with organizational responsibility from excessive connections, as well as excessive risk

associated with being a prominent member of a covert network. Restructuring spreads

the burden and risk throughout the neighboring nodes and increases the targeted

node’s utility. This study adopts the restructuring methods defined in Nagaraja &

Anderson (2008): ring and clique formation. Restructuring strategy is determined by

the categorical variable λ and remains fixed throughout the game.

The following sections introduce and discuss the two methods of network restruc-

ture. A visual representation of restructured networks is provided. The terrorist

network attributed to the 1998 U.S. Embassy bombings in Kenya and Tanzania (Gef-

fre, 2007) is used to illustrate these methods on a real-world organization. Figure 3

illustrates the initial network structure, which is more formally discussed in Chapter

IV.

Ring Formation.

Ring formation redistributes direct connections from the vulnerable node to high

utility neighbors, forming a small ring in place of one high vertex order individual.
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External links from ring members are shared within the group, however, the overall

effect is to increase the benefit of utility against the costly direct connections. The

ring formation can be compared to the division of one executive position to a small

council of individuals.

Ring restructuring in the simulation is accomplished by first identifying the node

i∗ = u
(1)
i (g) in the ordered set of utility scores U = {u(1)i (g), . . . , u

(n)
j (g)}, where

u
(1)
i (g) = arg mini∈N ui(g). A set R of nodes is assembled where

R = {u(1)i (g), u
(n−ε+1)
k (g), . . . , u(n−1)m , u

(n)
j (g)} (10)

and |R| = ε. Node indices are used in the event of a tie in utility scores. Each node in

R is subsequently connected to one another sequentially in g until u
(1)
i (g) is connected

to u
(n)
j (g). Only sequential linking is allowed. The nodes are then formed into a ring

structure within the network. The original external links belonging to u
(1)
i (g) are

redistributed by index in the set R until no more remain.

Figure 4 illustrates a ring restructure on node 13 in the embassy bombing net-

work where ε = 5. Table 2 gives the initial and resulting utility values for all nodes

involved in the ring restructure. The ring structure redistributes costly direct rela-

tionships from the low utility node throughout the ring. The result is a redistribution

of utility throughout the group. This structure proves somewhat problematic as com-

munication within the network is now channeled through the ring members.

Table 2. Utility Values of Select Nodes for Ring Restructure

Node Starting Utility Ending Utility

13 -0.727 3.233
4 5.174 2.096
2 4.772 1.4
5 3.086 2.939
6 3.783 1.4
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Figure 4. Network following ring restructure on node 13

Clique Formation.

Clique formation breaks a high vertex-order node into a small clique of individual

nodes utilizing low vertex order neighbors. It acts much like the ring formation,

however, it allows for more inter-connectivity within the group. This restructuring

strategy is comparable to a senior commander appointing an executive officer to

shoulder the burden of some direct responsibilities.

Clique restructuring in the simulation is accomplished by first identifying the

node i∗ = u
(1)
i (g) in the ordered set of utility scores U = {u(1)i (g), . . . , u

(n)
j (g)}, where

u
(1)
i (g) = arg mini∈N ui(g). A set, C, of nodes is assembled where

C = {u(1)i (g), u
(n−ε+1)
k (g), . . . , u(n−1)m , u

(n)
j (g)} (11)

and |C| = ε. Node indices are used in the event of a tie in utility scores. Each node
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Figure 5. Network following clique restructure on node 13

in C is then connected to every other node in C. The nodes form a dense clique

structure within the original network. The original external links belonging to u
(1)
i (g)

are redistributed by index in the set C until no more remain.

Figure 5 illustrates a ring restructure on node 13 in the embassy bombing network

where ε = 5. Table 3 gives the initial and resulting utility values for all nodes

involved in the ring restructure. The clique structure redistributes the costly direct

connections throughout all clique members, while also ensuring any node within the

clique is connected. This incurs a higher cost in utility compared to ring restructure

due to the addition of more costly direct connections. This method does benefit by

creating a more robust network structure.

Restructuring Effects on Network.

Restructuring increases the utility of a target node to the detriment of ε other

nodes. However there is also an associated cost to the entire network. Table 4 gives

the values for ν(G), average utility, for the initial network, as well as the networks

37



Table 3. Utility Values of Select Nodes for Clique Restructure

Node Starting Utility Ending Utility

13 -0.727 2.39
4 5.174 1.106
2 4.772 0.41
5 3.086 2.939
6 3.783 0.41

following ring and clique restructure. The network experiences an overall drop in

ν(G) due to the redistribution of edges to high utility nodes, as well as the inclusion

of two additional costly links. Although this restructuring mechanism fails to include

a direct cost, the drop in average network utility incurs an indirect cost. Repetitive

network restructuring could prove detrimental to any network.

Table 4. ν(g) Following Network Restructure

Initial ν(g) Ring Restructure ν(g) Clique Restructure ν(g)

2.2137 2.0307 1.827

It should be noted that if 1 ≤ ε ≤ 3, both ring and clique restructuring methods

result in identical network structures.

Network Recruitment.

If mini∈N ui(g) ≥ ρ, the defending player will instead choose to recruit new nodes

to expand the operational capabilities of the overall organization. These new nodes

will connect to existing nodes and expand the organization. This condition is indica-

tive of a network where all members are satisfied with group participation and seek

to expand their operational capabilities. The simulation models recruitment using

a hybrid regeneration model that uses growth through either exponential random or

preferential attachment methods.
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Hybrid Regeneration Model.

Networks can grow or regenerate through various methods, however, two of the

most widely researched are the Erdös-Rényi random exponential method and pref-

erential attachment method (Jackson, 2010). Randomly generated graphs form uni-

formly and independently within the existing network. The probability of forming

a link with an existing node ai is simply the proportion of that node relative to all

other nodes in the network

pRi =
1

|N |
. (12)

Nodes formed through preferential attachment are assigned edges probabilistically

based upon existing nodes’ edges proportional to the number of edges within the

network. The probability of forming a link with node i is the quotient of the degree

of node i and the sum of degrees of all existing nodes

pPi =
di(g)∑
j∈N dj(g)

. (13)

Bloch & Jackson (2007) present a hybrid model utilizing both the exponential

random method and preferential attachment method concurrently to better model

observed data. For every node added to an existing network, j∗, a total of dαψe edges

are first added randomly to g where α ∈ [0, 1]. These edges form a new neighborhood

of direct connections, Nj∗(g) giving the newly created node dαψe direct relationships.

These direct relationships provide node j∗ access to an expanded neighborhood, or

“friends of friends”, defined by the set N2
j∗(g). Once all random edges are created,

ψ−dαψe edges are added to g through preferential attachment connecting j∗ to nodes

within N2
j∗(g) probabilistically based upon their degrees, as seen in Equation 13. This

method allows a new node to show preference towards higher degree nodes during
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Figure 6. Network on 7 nodes and 12 edges

the formation phase.

To visually represent the hybrid regeneration model, consider the network dis-

played in Figure 6. The network is a randomly generated network of 7 nodes on

12 edges. The hybrid regeneration method is employed to add one additional node,

where ψ = 3 and α = 2
3
. These values result in two edges first being added randomly

and the third edge being added through preferential attachment.

For the first phase of the hybrid regeneration method, nodes a3 and a6 are ran-

domly selected for connection to node a8. The probability of selection, as determined

by Equation 12, is pR3 = pR6 = 1
7

for every node in N . Figure 7 displays the resulting

network once g3,8, g6,8 = 1 ∈ g.

The second phase of the hybrid regeneration begins with identification of the 2-

step neighbors of node 8, or all the new node’s “friends of friends”. The set N8(g) =

{4, 5} is identified and the probability of selection, in accordance with Equation 13,

is pP4 = pP5 = 1
2
. The method chooses node 4 for connection through preferential

attachment, shown in Figure 8, and the process now terminates.

As Bloch & Jackson (2007) conclude, this formulation creates more robust network
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Figure 7. Random network regeneration through node 8 : ψ = 3, α = 2
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Figure 8. Preferential attachment network regeneration through node 8 : ψ = 3, α = 2
3
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designs and greater flexibility in matching a network growth model to observable data.

By varying α, the growth model fluctuates from purely random to purely preferential

attachment regeneration.

3.5 Termination Phase

The defense phase concludes with a recalculation of the defending player’s utility

values. The simulation continues advancing through game phases until at least one

of three criteria are met: the defending player’s network size is successfully reduced

to prespecified level, the overall defending utility drops below a prespecified level, or

the simulation exceeds a prespecified number of rounds.

Reducing the Defending Player.

The simulation terminates if the number of members in the defending network

drops to ε, or |Nt| ≤ ε where Nt is the set N at time t. Continuing the simulation

when |Nt| ≤ ε results in a full restructuring of the network during either ring or clique

restructuring. A defending network reduced so dramatically would also represent

an enemy force that is significantly reduced but still gathering utility from network

participation. Such a small group of network members represents an entirely different

form of opponent, forcing a reevaluation of the dynamic game.

Overall Drop in Utility.

The simulation terminates given the conditions in Equation 14, or if the defending

player’s average utility drops, ν(gt) where gt is the network at time t, below 25% of

its initial value ν(g0).

ν(gt) < 0.25ν(g0) (14)
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This condition represents effective targeting by the attacking player. Intuitively a

defending player experiencing such a loss in utility will perceive a continuation of this

devaluation. Low utility values would force dissolution or a significant restructure of

network topology. The proportion of lost utility is chosen arbitrarily based upon the

author’s experience in the intelligence community.

Simulation Reaches Maximum Rounds.

The simulation terminates once 500 rounds are completed. Given 500 rounds, the

simulation either results in a winning player or a steady equilibrium.

3.6 Summary

This chapter provides a basic introduction to graph theory concepts and terminol-

ogy. Five measures of centrality are presented. Furthermore, this chapter outlines the

sequence of play modeled by the simulation and the methodology used in its defini-

tion. Chapter IV presents the results of the simulation, an enriched simulation within

a designed experiment, and follow-on experimentation dictated by the experimental

design.
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IV. Implementation, Results, and Analysis

This chapter discusses the implementation and results of the simulation presented

in Chapter III. The purpose of this application of the simulation model is to investigate

the impact of attacker and defender interactions on the size of the largest network

component and average network utility. Of particular interest is the effects of limited

information states on an attacker given uncorrelated attack strategies. Also explored

is the effectiveness of the defender’s regeneration and restructuring strategies. Finally,

the efficacy of the chosen utility function is examined. Test networks are carefully

constructed so as to emulate observed convert networks, and sensitivity analysis is

presented on all experimental factors. Two designed experiments are presented to

study the significance of factors and their interactions.

4.1 Network Construction

The PNDCG algorithm constructs representative networks using N0 to closely em-

ulate the characteristics of a known covert network. The PNDCG algorithm employs

specified network measures to generate a structure that meets desired specifications.

The node set N0, the initial starting set where |N0| = 100, is selected to provide

a network of adequate size for analysis while maintaining reasonable computational

requirements. The size of the network remains fixed throughout the simulation. The

PNDCG network output is stochastic, requiring additional analysis to select networks

that best represent desired characteristics. The following subsections introduce two

constructed network analogs, selected network measures, and resulting networks used

for the designed experiments.
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9/11 Hijacker Network Dataset.

The 11 September, 2001 hijacker network compiled by Krebs (2002) is chosen

for its relevance and relative simplicity. The nineteen node network is a relatively

sparse organization that limits highly connected nodes to provide greater operational

security. The structure of this network is seen in Figure 9.
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Wail Alshehri

Satam Suqami

Figure 9. Trusted connections within the 11 September, 2001 Hijacker Network (Krebs,
2002)

Degree distribution within N provides the primary network measure used to spec-

ify the structure of g. Specifying degree distribution results in a network that most

closely resembles the sparse structure of the hijacker network. Preferential attachment

methods are undesirable as they result in several highly connected nodes. Methods

utilizing strictly random network generation can be used, however the resulting net-

work properties vary significantly relative to the specified probability.
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The PNDCG algorithm produces a user-defined number of constructed networks,

each of which is compared to find the network that best fits the observed network. Ten

constructed networks are generated and compared for adequacy. The discrete degree

distributions of both observed and constructed hijacker networks are analyzed using

the Kullback-Leibler divergence. The divergence, denoted DKL(P ‖ Q), represents

the information lost when Q is used to approximate P , where Q is a theoretical model

and P is the true distribution (Kullback & Leibler, 1951). All PNDCG output are

compared and the constructed network where DKL(P ‖ Q) = 0.0278 is selected as

the best fit.
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Figure 10. Comparison of the 11 September, 2001 Hijacker Network (Krebs, 2002) and
PNDCG Hijacker Networks

Figure 10 visually compares the degree distribution of the hijacker organization

with the PNDCG output. The left plot displays the frequency of degree distributions

in both networks. The center plot displays a scaled frequency for each network, giving

a better picture of the true organizational composition. The right plot indicates the

rate of change between degree distribution levels. The figure shows the close similarity

in degree distribution between the observed hijacker network and the engineered

network using the PNDCG algorithm.
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Table 5. Comparison of Major Network Measures in 11 September, 2001 Hijacker
Network and Constructed Network

Measure Hijacker Network (Krebs, 2002) PNDCG Output

Cluster Coefficient 0.3807 0.1533

Betweenness Centrality 0.3096 0.0834

Proximal Target Betweenness 0.8421 0.9600

Closeness Centrality 0.2877 0.2006

Table 5 presents select network measures for the observed hijacker network and

the PNDCG constructed network. Degree and eigenvector centrality are omitted as

the measures do not scale to network size, failing to provide adequate comparison

between differing networks. Expanding the network to 100 nodes while maintaining

the same degree distributions results in minor changes in network measure scores.

The cluster coefficient and betweenness centrality measures differ significantly. The

constraint on degree distribution limits the PNDCG algorithm’s ability to create

triad relationships. Closeness centrality remains quite similar though, showing that

the average distance between nodes is relatively the same.

The PNDCG output provides an adequate representation of a 100 node analog

network for the 9/11 hijacker network. Some network measures are significantly

altered due to restrictions on degree distribution, however limiting the number of

high degree nodes is of greater importance.

1998 U.S. Embassy bombings in Kenya and Tanzania Dataset.

Geffre et al. (2009) presents a terrorist network responsible for the bombing of the

U.S. embassies in Kenya and Tanzania. The degree distribution of this group has a

greater magnitude compared to the hijacker network, most likely due to the decreased
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operational security concerns in 1998.
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Figure 11. 1998 U.S. Embassy Bombing Network (Geffre et al., 2009)

Figure 11 displays the network structure of the nineteen node real-world organi-

zation. Ten representative networks are again compared, and the network DKL(P ‖

Q) = 0.1121 is selected as the representative network analog. Degree distribution is

once again analyzed and employed as the primary desired network structure char-

acteristic for the PNDCG algorithm. Figure 12 provides a visual comparison of the

degree distributions of both the observed embassy bombing network and the PNDCG

constructed network. The degree distributions are a close match for both networks.
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Figure 12. Comparison Between Real-Life and Constructed Embassy Bombing Net-
works

Table 6 provides basic network measures for both the embassy network and

the PNDCG output. Significant differences between network structures exist, how-

ever there is improvement over the hijacker network. Despite these differences, the

PNDCG output provides an adequate representation of the embassy bombing group.

Table 6. Comparison of Major Network Measures in Embassy Bombing Network and
Constructed Network

Measure Embassy Bomber Network PNDCG Output

Cluster Coefficient 0.5788 0.4111

Betweenness Centrality 0.0543 0.0277

Proximal Target Betweenness 0.6667 0.9200

Closeness Centrality 0.5455 0.2734

4.2 Factors

This section presents the experimental response, magnitude of factors, and an

investigation of each factor in single experiments.

Response.

The experiment response is determined to be the size of the largest network com-

ponent, |x|, once the simulation satisfies at least one of its two termination criteria.
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Component sizes are low when the attacker effectively reduces the defending network.

Conversely, a larger final component is indicative of a successful defense. Although

average network utility at time t, νt(g), is a more intuitive response for player suc-

cess, the values for |x| accurately represent success while being subject to far fewer

perturbations within the simulation. This phenomenon is more thoroughly discussed

in the following sections.

An initial assessment conducts 1,750 simulation replications to analyze the vari-

ance inherit within the response. Assuming normality of the response means over

greater sampling, the number of runs is decreased to obtain a tighter confidence

interval around the true mean while conserving computational requirements. The re-

sults of these initial repetitions are shown in Figure 13. The observed variance within

the response is a result of the stochastic nature of the simulation. The attacker’s

success many times depends exclusively upon the nodes selected in the initial permu-

tation of the state of information vector. Some draws result in an attacker submatrix

that facilitates almost immediate destruction of the defending network, whereas other

draws enable the defender to sustain prolonged attack. The stochastic processes tied

to the attacker expanding its state of information introduces further variance into

the results. A sample size of 200 is determined to be adequate using the sample size

and power calculator in JMP. This sample size minimizes runs while maintaining 80%

power and the ability to detect a 5% change in the response.
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Figure 13. Boxplot and Standard Deviation of Response

Magnitude of Factor Levels.

Manual repetitions of the simulation are used to determine the magnitude of

factor levels for continuous variables. These magnitudes should be large enough to

adequately detect significance while remaining within a reasonably feasible space.

Table 7 summarizes continuous factor levels to be used in the designed experiment.
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Table 7. Factor Levels for Continuous Variables

Factor Low Medium High

α Hybrid Regeneration Method 0.1 0.5 0.9

β Probability of Successful SSE 0.1 0.5 0.9

γ Probability of Successful Intelligence 0.1 0.5 0.9

δ Utility Decay Parameter 0.1 0.5 0.9

ε Size of Rings or Cliques 3 6 8

ζ Number of Nodes Investigated for Intelligence 4 7 10

κ Cost of a Direct Relationship 0.1 0.8 1.5

ρ Defender Decision Criteria -1 0 1

τ Attacker Decision Criteria 0.1 0.5 0.9

φ State of Attacker Information 0.1 0.5 0.9

ψ Number of Edges Assigned to New Nodes 3 6 8

The following subsections present analysis of the effects of an individual factor at

varying levels using the embassy bombing network. Unless under consideration, all

continuous factor levels are set to the medial level of magnitude. Categorical variables

include betweenness centrality for attacker targeting strategy and ring method for

defender defensive strategy, and remain consistent throughout unless otherwise noted.

Random number seeds are maintained between experimental runs in order to restrict

variance to the effects of the factor under consideration.

Base Network Measures.

Figure 14 presents the value of the overall network size and largest component

given a complete game round. Despite some minor perturbations, the network is sus-

tained as a single connected component for the duration of the round. This demon-
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strates the resiliency of the network against a series of attacks. The redundancy in

relationships allows for the removal of important nodes while still maintaining the

general organizational structure.
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Figure 14. Network Size |Nt| and Size of the Largest Component |xt| over Time

Figure 15 shows the defender utility values for the same simulation depicted in

Figure 14. Perturbations in utility can be seen throughout as attacker and defender

strategies interact dynamically.
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Figure 15. Utility Scores over Time

It is interesting to note the variance in utility scores throughout the round as it

relates to network size. The defense is initially successful in expanding the network,
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and the utility values show an initial increase in maximum and mean values. However,

both utility values and variance decrease as the attacker proves successful in degrading

the defending network.

Hybrid Regeneration (α).

Figure 16 demonstrates the effect on νt(g), the average network utility at time

t, by varying the level of α. At α = 0.9, the defending network is regenerating

almost exclusively by random connections. This results in a robust network capable

of withstanding repeated attacks. At α = 0.5, the defending network is regenerating

half randomly and half by preferential attachment. The resulting network is more

robust, capable of maintaining a higher utility against sustained attacks. Decreasing

to α = 0.1 significantly impacts the ability of the network to withstand attack.

The algorithm determines preferential attachment connections based upon the initial

random draw of connections. Decreasing α to its lowest level greatly diminishes the

size of the second-step neighborhood of node i, |N2
i (g)|, limiting the quantity and

quality of nodes available for preferential attachment. With ψ = 6 and dψ × αe =

d6 × 0.1e = 1, one node j being chosen randomly and ψ − 1 edges assigned to the

nodes in Nj(g). This results in a highly localized connection for newly created nodes.
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Figure 16. α Effect on Average Utility νt(g)
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Figure 17 further demonstrates the effects of α on the defending network. The

effect of α = 0.1 is a rapid reduction in |x| until the game round completes relatively

quickly. The results for α = 0.5 and α = 0.9 offer more compelling and interesting

results. The effect of α = 0.5 shows the strongest initial performance as a balanced

regeneration increases or maintains the structure of the largest component. This is

because the balanced regeneration method is allowed superior choices for preferential

connections. However, as the round continues, α = 0.9 dominates by sustaining the

network slightly longer.
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Figure 17. α and Size of the Largest Component |xt|

Varying α results in dramatically different behavior during defensive regeneration.

Defender network defense performance, as measured by the size of the largest network

component |x|, is generally better when α = 0.5 or α = 0.9. While α = 0.9 proved

the most robust in performance across the entire round, α = 0.5 showed significantly

better initial performance. Greater investigation during the designed experiment will

describe these behaviors.

Probability of Successful Sensitive Site Exploitation (SSE) (β).

The magnitude of β greatly impacts the results of the game despite only occurring

during node removal in the attack phase.
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Figure 18. β Effect on Average Utility νt(g)

Figure 18 presents the significance of β on the attacker’s effectiveness at reducing

νt(g). Figure 19 complements this result as lower levels of β weaken the attacker’s

ability to effectively target key members of the network.
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Figure 19. β and Size of the Largest Component |xt|

The attacker’s ability to discover additional information given a node removal

significantly impacts attacker effectiveness. By lowering β, the attacker’s ability to

expand its state of information is restricted to intelligence gathering. This signif-

icantly slows the attacker’s ability to effectively target key nodes and reduce the

defender. This process also accurately represents real-world operations where SSE is

critical to the intelligence cycle.
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Probability of Successful Intelligence (γ).

As already discussed, the attacker’s ability to expand its state of information is

a critical component of its attack strategy. Figure 20 shows the defender is able to

withstand repeated attack rounds given a lower γ, however the attacker proves more

successful as γ increases.
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Figure 20. γ Effect on Average Utility νt(g)

Figure 21 presents an interesting phenomenon as γ increases. Both γ = 0.5 and

γ = 0.9 result in similar impacts on |x|, however γ = 0.9 ends significantly sooner.

This result indicates the attacker’s ability to decisively target critical nodes given

a higher state of information. The higher rate of successful intelligence gathering

facilitates better targeting, allowing the attacker to complete the round more quickly.
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Figure 21. γ and Size of the Largest Component |xt|

Utility Decay Parameter (δ).

Figure 22 shows the effects of varying δ on νt(g), with drastic differences between

the responses. This is due to the cost of directed relationships, κ, being set at its

medial level. There are suspected two-factor relationships between δ and related

factors ρ and κ. These three factors comprise the defender’s decision criteria and

greatly impact its resilience against attack.
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Figure 22. δ Effect on Average Utility νt(g)

Figures 22 and 23 show the significant impact δ has on the defending network.

High levels of benefits due to relationships result in a network that outpaces the
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attacker. Low levels result in a network that is immediately defeated.
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Figure 23. δ and Size of the Largest Component |xt|

Size of Rings or Cliques (ε).

Figure 24 presents the effects of larger restructuring rings or cliques on νt(g). The

defending network proves more robust as ε increases. This result is attributed to

the method of restructuring. As connections are redistributed amongst restructured

nodes, the network becomes denser and thus more difficult for the attacking player

to effectively target.
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Figure 24. ε Effect on Average Utility νt(g)
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Figure 25 shows how large restructuring groups allow the defending player to

maintain cohesion within the largest component throughout the round.
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Figure 25. ε and Size of the Largest Component |xt|

Number of Nodes Investigated for Intelligence (ζ).

Figure 26 shows a minimal impact from varying ζ on the attacker’s success.
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Figure 26. ζ Effect on Average Utility νt(g)

This impact is reiterated in Figure 27, where only ζ = 3 shows a slightly reduced

impact on the round. These results indicate the success of intelligence gathering

is more a function of γ and target selection rather than thoroughly searching ad-
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ditional available targets. This emphasizes the importance of intelligence targeting

procedures.
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Figure 27. ζ and Size of the Largest Component |xt|

Cost of a Direct Relationship (κ).

Figures 28 and 29 present the impact of the cost of relationships on network

utility and structure. The defender is unable to withstand the attacker when κ = 1.5,

however both other levels prove resilient throughout the round.
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Figure 28. κ Effect on Average Utility νt(g)

The impact of κ on |x| when κ = 0.1 is of particular interest. The decreased costs

of direct relationships allow the defender to continue connecting without negative
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consequence. The higher utility values allow the network to continue recruiting and

expanding.
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Figure 29. κ and Size of the Largest Component |xt|

Defender Decision Criteria (ρ).

Figures 30 and 31 present a significant impact on the game by varying ρ. A lower

value of ρ results in the defender electing to recruit rather than restructure low utility

relationships. Defenders with a higher ρ would then rely upon a restructure strategy

rather than recruitment.
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Figure 30. ρ Effect on Average Utility νt(g)

A defender who relies upon restructuring proves less resilient to a determined
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attacker. This is due to the implicit utility costs associated with restructuring. Al-

though utility is increased for a node targeted for restructure, there is a negative

impact on νt(g) over time as the low utility is distributed throughout the network.
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Figure 31. ρ and Size of the Largest Component |xt|

Attacker Decision Criteria (τ).

The value of τ determines whether an attacker chooses to conduct node removal

or intelligence gathering. Attackers with a higher value of τ will more often elect

to conduct intelligence gathering. Figure 32 shows the benefits of an aggressive at-

tack strategy during the round; the more aggressive attackers prove more successful

reducing the defender’s utility. An attacker with τ = 0.9 is one who relies heavily

upon intelligence gathering to gain a near perfect state of information, presumably

then followed by precise removal of key targeted nodes. This strategy shows promise

towards the end of the round, but the overall effect is to allow the defender freedom

to recruit and restructure with decreased attacks.
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Figure 32. τ Effect on Average Utility νt(g)

Figure 33 shows the advantage gained by an aggressive attacker. The lower values

of τ prove far more successful at reducing the largest component, while τ = 0.9 is

unsuccessful in this regards.
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Figure 33. τ and Size of the Largest Component |xt|

A tactically patient attack strategy, where τ is high, effectively targets nodes

by developing a near perfect state of information. However this type of attacker

personality fails over the course of the round. The more aggressive attacker is more

successful in reducing the defending network. In real-life operations, this manner

of strategy selection would be tempered by rules of engagement and strategic goals.

A more aggressive attacker is more likely to cause collateral damage to the civilian

population, possibly resulting in an overall failure in the conflict despite effectively
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reducing a single enemy network.

State of Attacker Information (φ).

Figure 34 demonstrates the effects of varying φ on mean network utility νt(g).

There is a pronounced effect on νt(g) as higher states of information allow the attacker

improved targeting capabilities. Figure 35 shows the effect of varying φ on the size

of the largest component.
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Figure 34. φ Effect on Average Utility νt(g)

When φ = 0.9, there is an initial increase in utility due to regeneration that

is quickly overcome by effective attacker targeting. Figure 35 shows the increased

success and efficiency of the attacker by a rapid decrease in the size of the largest

component. The defending network is defeated in a relatively short amount of time.
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Figure 35. φ and Size of the Largest Component |xt|

When φ = 0.1, utility shows an initial increase despite degradation by the attack-

ing force. Although the attacker is removing nodes, the limited state of information

results in poor targeting selection and a reducing impact on the defender’s utility.

Edges Assigned to Formed Nodes (ψ).

The value of ψ shows no impact on the overall results of average utility, as seen in

Figure 36, however it does significantly impact the defending player. A defender with

a high ψ invests heavily into connecting newly recruited nodes with the existing net-

work. This investment pays dividends in overall utility, despite being counterintuitive

due to the increased costs associated with additional links.
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Figure 36. ψ Effect on Average Utility νt(g)
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Using the hybrid regeneration method, the increased investment into random con-

nections for node i ensures an increase in |N2
i (g)|. This results in a larger population

of nodes available for preferential attachment.
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Figure 37. ψ and Size of the Largest Component |xt|

Defense Regeneration Method (λ).

Figure 38 shows the effect of defense regeneration strategy on the size of the largest

component. Clique restructure appears to result in a more robust network defense.

This is due to the connection of all clique members with each other following clique

formation. These results are consistent with the findings of Nagaraja & Anderson

(2008).
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Figure 38. λ Effect on Average Utility νt(g)
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Figure 39 shows the effects of regeneration method on |x|, with the clique method

demonstrating better performance.
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Figure 39. λ and Size of the Largest Component |xt|

Although these initial results show clique regeneration as superior to ring regen-

eration, there are suspected interactions with several other factors to consider.

Attack Strategy (θ).

Figure 40 shows the effect on average utility given differing attack strategies

through one game round. There appears to be a significant impact due to the perfor-

mance of each measure. Degree centrality CD appears to dominate all other strategies

for the attacker. Although there is significant overlap within the round, it appears

that closeness centrality CC is the poorest performing strategy. Recall that defender

strategy is fixed at ring restructuring, and so these initial findings fail to adequately

assess performance based upon all factors. The designed experiment in the following

section addresses this shortcoming.

68



0 50 100 150 200 250 300 350 400 450
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time(t)

ν(
g)

 

 

CL

CB

CP

CD

CE

CC

Figure 40. θ and Average Utility νt(g)

Figure 41 shows much the same impacts of attack strategy on size of the largest

component. This is only a single round of the game, so more experimentation is

required to adequately measure the magnitude of impact by each strategy.
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Figure 41. θ and Size of the Largest Component |xt|

4.3 Designed Experiment

A designed experiment is employed to investigate the significance of important

game factors and their interactions. Although all factors show significance in single
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Table 8. Factors in the Designed Experiment

Term Description Player Type

α Regeneration method Defender Continuous
δ Decay value of networks connection utility Defender Continuous
θ Attack Strategy Attacker 6-level Categorical
κ Utility cost of maintaining direct links Defender Continuous
λ Network restructuring strategy Defender 2-level Categorical
φ Initial probability of attacker state of information Attacker Continuous

run analysis, the designed experiment only investigates the factors indicated in Table

8. The categories of θ correspond to the six network centrality measures employed as

targeting by the attacker and the two categories of λ correspond to the two defensive

restructuring strategies.

Factors β, γ,ε, ζ and ψ are omitted from the final analysis as they are deemed to

be trivial. Although each significantly impacts the results of a single game, none are

tied to a cost or benefit function and thus would fail to present significant findings.

Both ρ and τ are highly significant within the model, however serve only as artifacts

of the simulation rather than describing real-world phenomena. All omitted factors

are set to their medial level for the duration of the designed experiment.

Experimental Design.

The experimental design is a 25 × 61 resolution V design. This design implies all

main effects being confounded with four factor and higher order interactions, and all

two-factor interactions are confounded with three factor or higher order interactions.

This results in the independence of all main effects and two-factor interactions. The

design is augmented with six center run treatments to test for curvature, one for each

of the six levels of θ. We chose this design to avoid confounding effects and fully

investigate curvature and two-factor relationships. Effects of three factor or higher

order interactions are assumed to be trivial due to the variance inherit in the system.

70



The simulation requires considerable computational requirements, even under

small-scale network implementation. The parallel processing toolkit in MATLAB

allows multiple instances of the simulation to run simultaneously on a multiple core

computer. The simulation is structured to allow parallel processing and thus greatly

reduces the requisite time for multiple run experiments. The simulation is imple-

mented on a dual Intel Xeon E5-2650v2 workstation with 192 GB of RAM.

Results.

This section presents the results of the designed experiment followed by a discus-

sion of each significant factor individually.

Experimental responses appear normally distributed, and residuals are evenly dis-

tributed against the predicted response. One data point proved to be a significant

outlier and exhibit unusually high variance within the response. The unusually high

level of variance is assumed to be a result of simulation and the data point is removed

from analysis.

Table 9 provides the summary of analysis for the 9/11 hijacker network. As

expected, the model’s fit is not exceptionally high due to significant noise in a so-

cial network model. The lack of fit analysis determines that the model adequately

fits the data. The table includes variance inflation factors (VIF) to investigate any

multicollinearity within the factors. All VIF values are adequately low, indicating

the variance for each factor estimated in the model is not significantly impacted by

multicollinearity with other factors.
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Table 9. 9/11 Hijacker Network Results

Summary of Fit

R2 0.5061

Adjusted R2 0.4536

Root Mean Square Error 27.0568

Mean of Response 99.1097

Observations (or Sum Wgts) 53

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio Prob>F

Model 5 35256.9920 7051.4000 9.6321 <.0001

Error 47 34407.2650 732.0700

C. Total 52 69664.2570

Lack of Fit

Source DF Sum of Squares Mean Square F Ratio Prob>F

Lack Of Fit 4 1708.1260 427.0320 0.5616 0.6918

Pure Error 43 32699.1380 760.4450 Max R2

Total Error 47 34407.2650 0.5306

Parameter Estimates

Term Estimate Std Error r Ratio Prob> |t| VIF

Intercept 98.1836 3.7251 26.3600 <.0001

α -7.6708 3.9938 -1.9200 0.0608 1.0626

κ -11.2668 3.9508 -2.8500 0.0064 1.0096

θ{CD&CP&CC − CB&CL&CE} -12.8223 3.7251 -3.4400 0.0012 1.0202

α ∗ κ 16.1008 3.9508 4.0800 0.0002 1.0160

α ∗ θ{CD&CP&CC − CB&CL&CE} 9.0764 3.9938 2.2700 0.0277 1.0099

Table 10 provides the summary of analysis for the embassy bombing network. As

expected, the model’s fit is not exceptionally high due to significant noise in a social

network model. The lack of fit analysis determines that the model adequately fits the

data. An analysis of main effects follows, with 1st order interactions subsequently

addressed.
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Table 10. Embassy Bombing Network Results

Summary of Fit

R2 0.4845

Adjusted R2 0.4043

Root Mean Square Error 22.7328

Mean of Response 91.5722

Observations (or Sum Wgts) 53

Analysis of Variance

Source DF Sum of Squares Mean Square F Ratio Prob>F

Model 7 21852.3410 3121.7600 6.0408 <.0001

Error 45 23255.0080 516.7800

C. Total 52 45107.3490

Lack of Fit

Source DF Sum of Squares Mean Square F Ratio Prob>F

Lack Of Fit 10 3637.9570 363.7960 0.6491 0.7619

Pure Error 35 19617.0510 560.4870 Max R2

Total Error 45 23255.0080 0.5651

Parameter Estimates

Term Estimate Std Error r Ratio Prob> |t| VIF

Intercept 94.4195 3.2628 28.9400 <.0001

α -3.3119 3.4188 -0.9700 0.3379 1.0626

κ -5.3753 3.3325 -1.6100 0.1137 1.0096

φ 6.7289 3.3498 2.0100 0.0506 1.0202

θ{CC&CE&CP&CD − CL&CB} -9.9107 3.2816 -3.0200 0.0042 1.0160

α ∗ κ 10.8969 3.3329 3.2700 0.0021 1.0099

α ∗ φ -10.0571 3.3502 -3.0000 0.0044 1.0171

α ∗ θ{CC&CE&CP&CD − CL&CB} 8.2353 3.4411 2.3900 0.0209 1.0765

Hybrid Regeneration α.

Both experiments find α significant within interactions however the main effect is

insignificant at the 0.05 significance level. These interactions are introduced following

a discussion of related main effects.
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Utility Costs κ.

Both experiments identify κ as a significant main effect. This is an intuitive result

as higher costs of relationships will result in a less stable network topology due to

high degree nodes with low utility.
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Figure 42. Interaction of α and κ in the Hijacker Network

The interaction of α and κ is significant in both experiments. Given a low level of

κ, a regeneration strategy utilizing random attachment is preferable for the defending

player. Given a high level of κ, a regeneration strategy utilizing preferential attach-

ment is preferred. This highlights the importance of selecting relationships versus the

associated costs. When costs are low, randomly forming nodes creates a more robust

network more difficult for the attacker to degrade. Higher costs require more selective

structure to relationships or risk adversely impacting the network utility.

Attacker State of Information φ.

Only the embassy bombing network identified φ as a significant factor. This

is a result of the different and unique network topologies. The embassy network

has high degree nodes and a more robust structure. This increased structure would
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allow a well-informed attacker to quickly degrade the network by careful selection of

critical nodes. Conversely, the hijacker network is relatively disperse with a structure

that lacks critical nodes. This structure results in a network that remains equally

robust against attackers of differing states of information. The hijacker network lacks

critical nodes that can be exploited for quick degradation and thus requires prolonged

attrition.
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Figure 43. Interaction of θ and φ in the Embassy Bombing Network

The embassy network also identifies the interaction of φ and α as a significant

factor. Given α at a low level, lower levels of φ result in a more successful attacker.

Moreover, higher levels of α and φ result in a more successful attacker. Therefore, a

defender facing a poorly informed attacker would do best to recruit using preferential

attachment. Building new relationships with existing highly connected nodes would

build a more robust network. However, random recruitment is preferable against a

well-informed attacker. Randomly forming relationships within the existing network

would spread the degree distribution evenly and not draw additional scrutiny upon

highly connected nodes.
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Attacker Strategy θ.

The interaction of α and θ is significant in both models, however each model

specifies different groups of preferable attack strategies. These measures are grouped

by significance, however each measure was evaluated individually within the sim-

ulation. The model differentiates the grouping {CD&CP&CC − CB&CL&CE} in

the hijacker network, with {CD&CP&CC} being the more effective measures. Like-

wise, {CC&CE&CP&CD − CL&CB} are identified in the embassy bombing with

{CC&CE&CP&CD} being the more effective measures. The primary difference be-

tween the groups is the inclusion of eigenvector centrality. This result demonstrates

that the effectiveness of network measures as attack criteria depends upon network

topology.
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Figure 44. Interaction of θ and α in the Hijacker Network

As presented in Figure 44, given low levels of α, attack strategies using {CB&CL&CE}

result in a higher ending component size in the hijacker network. Likewise, high lev-

els of α and attack strategies {CB&CL&CE} result in a lower final component size.

Attack strategies dependent upon {CD&CP&CC} do not significantly interact with
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α, however they do dominate the other group of strategies by always resulting in a

smaller ending component size. Figure 45 shows strategies {CC&CE&CP&CD} dom-

inate across all levels of α in the embassy bombing network, however the measures

do almost converge as α→ 1.
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Figure 45. Interaction of θ and α in the Embassy Bombing Network

4.4 Conclusions

The effectiveness of select targeting criteria depends upon the defending network

topology and regeneration method. Guzman et al. (2014) found that each uncorre-

lated measure captures a slightly different network phenomenon, and select measures

appear to perform best as targeting criteria: degree centrality, proximal target cen-

trality, and closeness centrality. Degree centrality describes the individuals with the

most relationships, but fails to describe its relative importance or position within the

network topology. Proximal target betweenness captures nodes by relative impor-

tance in terms of geodesics, giving insight into the importance of a node based upon

position within network hierarchy. Closeness centrality captures the node’s position

relative to the entire network. Operational application of network targeting measures
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should include a weighted multi-faceted approach to develop a clearer picture of the

relationships within a defending network.

Betweenness centrality and the clustering coefficient prove to be poor targeting

criteria. Both measures are heavily reliant upon knowledge of relationships through-

out the entire defending network making them ill-suited for operational applications.

Eigenvector centrality is effective only in the more robust embassy bombing network.

Eigenvector centrality determines centrality based upon the relative importance of a

node’s neighbors. In sparse networks, such as the hijacker network, network topology

and degree distribution fail to capture the relative importance of nodes. Eigenvector

centrality should be applied with greater care given a defending network topology.

The simulation uses measures individually to test for significance and reduce com-

putational requirements. However, the timeline of real-world operations allow for

more detailed and thorough analysis. Analysts applying multiple network measures,

given knowledge of their applicability within a network topology, can best describe

complex network attributes and relationships.

The method of network regeneration significantly impacts the effectiveness of tar-

geting criteria, however optimal measures always dominate. In operational applica-

tion, any indication of regeneration method should be incorporated into the overall

assessment of targeting effectiveness. Betweenness centrality and clustering coefficient

perform significantly worse when a defender is regenerating through localized clusters.

The measures appear to almost converge as regeneration becomes more random.

State of attacker information is significant within the more robust embassy bomb-

ing network, where relative importance can be determined by network topology. This

network is indicative of most social networks where relative node importance is deter-

mined by relationships. Manufactured networks, such as the hijacker network, enforce

a specific network organization to obscure relative importance. The unique structure
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of the sparse hijacker network results in an organization difficult for the attacker to

degrade despite information state. The sparse structure and relatively low degree dis-

tribution allows utility and operational capabilities to remain high despite continuous

node removal.

The significant interaction of state of information and network regeneration demon-

strates the importance of relationship structures to the defender. The defender prefers

localized node connections against a poorly informed attacker. The localized connec-

tions greatly benefit network utility and grow a more robust structure. However, a

defender facing a well-informed enemy benefits from randomly connecting new nodes.

The erratic nature of random growth obscures network topology and decreases the

effectiveness of targeting.

In application, an attacker should understand the importance of network regen-

eration on their information state. Truly random connections would be costly and

difficult to coordinate for a defender, however simple social phenomenon may mimic

this behavior. A new individual to a network may be assigned certain operational

relationships, however dynamic social relationships create artificially random connec-

tions within the network. The new individual may have attended school with other

members, or be distantly related to others. These complex social relationships, occur-

ring outside the information state of almost any attacker, result in seemingly random

defender behavior and negatively impact targeting effectiveness.

Improved modeling of complex social behaviors is accomplished through incorpo-

ration of the distance-based utility function. Although cost is identified as the most

significant factor, the function allows a modeler significant flexibility in recreating

certain player behavior. Balancing costs and risks versus the benefits of network par-

ticipation better simulate an intuitive defender. Additionally, utility values can be

weighted to model benefits inherit to network participation. For instance, members
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of a highly idealistic or religiously fanatic network derive great benefit from organi-

zational participation. Likewise, membership in certain elite military units bestows

personal benefits far greater than those of simple network inclusion.

Although clique restructuring appears to be more effective, both methods of net-

work restructuring are insignificant in the overall network. A defender who continu-

ously recruits is best postured to withstand repeated attacks.

4.5 Limitations

Model defender networks are only analyzed under basic interpretations. In this

application, the distance-based utility function is restricted to realizing benefit only

from participation in a given network topology. This created a more parsimonious

model, but failed to adequately model the cost and benefits realized by observed

network members. Defender restructuring strategies are nested in current literature,

but fail to incorporate more realistic and observed restructuring strategies. The

simulation allows greater flexibility in capturing observed social phenomenon. Subject

matter expert (SME) input should be incorporated to analyze and validate parameter

levels given an observed network.

The attacker is limited in targeting criteria to analyze potentially optimal mea-

sures. However, the targeting process is best modeled as the value of multiple weighted

measures. Weights can be analyzed through assessment of network topology and SME

input. This results in a more valid representation of an attacking player’s targeting

criteria.

Resources constraints are not included as a model parameter. Intelligence pro-

cesses are included in the model to allow the attacker to expand state of information,

however these intelligence rates are not tied to a cost function. Any conclusions are

trivial, as better intelligence logically leads to more effective targeting. Likewise, deci-
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sion criteria do not include a weighted measure against resource constraints. Despite

being a dynamic model, the lack of resource constraints limit the simulation’s ability

to infer significance of certain parameters.
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V. Conclusions and Recommendations

The dynamic game on network topology presented in this study provides insight

into optimal strategies for counterinsurgency forces. The model includes novel appli-

cations of utility functions and hybrid regeneration to better model an insurgency

within complex social networks. The effective modeling of an insurgent force is

paramount towards gaining insight into effective attacker strategies. Incorporation of

uncorrelated network measures as targeting criteria enable analysis into their individ-

ual effectiveness for an attacking force. Attacker state of information is constrained

to better model observed case studies, as well as provide insight into optimal strate-

gies in differing phases of conflict. Furthermore, intelligence gathering processes are

included to allow a dynamic expansion of the attacker’s state of information.

This model can be incorporated into planning and operational cycles of a coun-

terinsurgency operations. Model parameters can be fixed according to SME input,

creating a defending network that is an approximate representation of specified in-

surgency forces. The players’ action spaces can be adjusted according to the rules

of engagement and operational tactics, techniques, and procedures. The model can

then determine the optimal attack strategy and targeting network measures given the

stated parameters. Tactical and operational decisions are frequently based upon a

commander’s state of information. Sensitivity analysis conducted on the model results

indicate the significance of state of information on counterinsurgency operations.

The flexible structure of this model allows numerous enhancements to develop fur-

ther insight into counterinsurgency operations or applications in different operational

environments.

Understanding the optimal state of information for an action poses a significant

challenge to any counterinsurgency commander. The addition of a cost or utility

function to intelligence gathering activities would allow insights into the benefits of
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these operations. Constantly gathering intelligence to expand states of information

is a trivial conclusion. Likewise is the unrealistic expectation of a perfect state of

information given a dynamic operational environment. Modeling the cost benefit of

intelligence gathering would provide insight into understanding adequate information

states given constraints and a specified insurgent force.

This study analyzes the effectiveness of individual network measures as attack cri-

teria. However, weighting multiple measures to determine targeting priorities would

more effectively model counterinsurgency forces. Each of the uncorrelated measures

captures a unique facet of social networks. Additionally, the effectiveness of each mea-

sure is dependent upon attributes of the defender. Modeling these effects would pro-

vide insight into optimal strategies given a specified defending network. The weights

from optimal model strategies could then be applied to operational counterinsurgency

targeting.

The model presented in this study provides valuable insights into counterinsur-

gency operations, however arguably more important is the model’s inherit flexibility.

Minor enhancements can make the model relevant in evaluating almost any network-

centric warfare application. Most compelling are the possible applications in the

burgeoning field of cyber communications. Infectious diseases and computer virus

outbreaks can be simulated given several enhancements to the basic model. These

enhancements are structured loosely from the Susceptible-Infected-Susceptible (SIS)

model in Jackson (2010). The defending player becomes the entire population with

weighted relationships between nodes representing probability of infection between

nodes. A certain proportion of nodes can be designated as immune to infection. The

model includes a rate of recovery following infection, which can be a set parameter or

random variate. An infection is introduced to the network, whereby attacker detec-

tion and strategy are analyzed. The model would provide insight into the cost and
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benefits of detection and control of infections, as well as optimal strategies to target

an infection within a given network.

Successful military operations will continue to rely upon an advanced understand-

ing of relevant networks and their topologies. Flexible models, such as the one pre-

sented in this study, enable commanders to assess optimal strategies and operational

effectiveness prior to commitment of military resources.
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Appendix A. Storyboard
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Albert, Réka, & Barabási, Albert-László. 2002. Statistical mechanics of complex
networks. Reviews of modern physics, 74(1), 47.
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